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Abstract
We present a notion of bounded quantification for refinement types
and show how it expands the expressiveness of refinement typing
by using it to develop typed combinators for: (1) relational algebra
and safe database access, (2) Floyd-Hoare logic within a state trans-
former monad equipped with combinators for branching and loop-
ing, and (3) using the above to implement a refined IO monad that
tracks capabilities and resource usage. This leap in expressiveness
comes via a translation to “ghost” functions, which lets us retain
the automated and decidable SMT based checking and inference
that makes refinement typing effective in practice.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.3.3 [Language Constructs and Features]: Poly-
morphism; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

Keywords haskell, refinement types, abstract interpretation

1. Introduction
Must program verifiers always choose between expressiveness and
automation? On the one hand, tools based on higher order logics
and full dependent types impose no limits on expressiveness, but
require user-provided (perhaps, tactic-based) proofs. On the other
hand, tools based on Refinement Types [22, 30] trade expressive-
ness for automation. For example, the refinement types

type Pos = {v:Int | 0 < v}
type IntGE x = {v:Int | x ≤ v}

specify subsets of Int corresponding to values that are positive
or larger than some other value x respectively. By limiting the
refinement predicates to SMT-decidable logics [17], refinement
type based verifiers eliminate the need for explicit proof terms, and
thus automate verification.

This high degree of automation has enabled the use of refine-
ment types for a variety of verification tasks, ranging from array
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bounds checking [21], termination and totality checking [29], pro-
tocol validation [2, 9], and securing web applications [10]. Unfor-
tunately, this automation comes at a price. To ensure predictable
and decidable type checking, we must limit the logical formulas
appearing in specification types to decidable (typically quantifier
free) first order theories, thereby precluding higher-order specifi-
cations that are essential for modular verification.

In this paper, we introduce Bounded Refinement Types which
reconcile expressive higher order specifications with automatic
SMT based verification. Our approach comprises two key ingre-
dients. Our first ingredient is a mechanism, developed by [27], for
abstracting refinements over type signatures. This mechanism is
the analogue of parametric polymorphism in the refinement setting:
it increases expressiveness by permitting generic signatures that are
universally quantified over the (concrete) refinements that hold at
different call-sites. However, we observe that for modular verifi-
cation, we additionally need to constrain the abstract refinement
parameters, typically to specify fine grained dependencies between
the parameters. Our second ingredient provides a technique for en-
riching function signatures with subtyping constraints (or bounds)
between abstract refinements that must be satisfied by the concrete
refinements at instantiation. Thus, constrained abstract refinements
are the analogue of bounded quantification in the refinement setting
and in this paper, we show that this simple technique proves to be
remarkably effective.

• First, we demonstrate via a series of short examples how
bounded refinements enable the specification and verification
of diverse textbook higher order abstractions that were hitherto
beyond the scope of decidable refinement typing (§ 2).

• Second, we formalize bounded types and show how bounds are
translated into “ghost” functions, reducing type checking and
inference to the “unbounded” setting of [27], thereby ensuring
that checking remains decidable. Furthermore, as the bounds
are Horn constraints, we can directly reuse the abstract inter-
pretation of Liquid Typing [21] to automatically infer concrete
refinements at instantiation sites (§ 3).

• Third, to demonstrate the expressiveness of bounded refine-
ments, we use them to build a typed library for extensible dic-
tionaries, to then implement a relational algebra library on top
of those dictionaries, and to finally build a library for type-safe
database access (§ 4).

• Finally, we use bounded refinements to develop a Refined State
Transformer monad for stateful functional programming, based
upon Filliâtre’s method for indexing the monad with pre- and
post-conditions [8]. We use bounds to develop branching and
looping combinators whose types signatures capture the deriva-
tion rules of Floyd-Hoare logic, thereby obtaining a library for
writing verified stateful computations (§ 5). We use this library
to develop a refined IO monad that tracks capabilities at a fine-



granularity, ensuring that functions only access specified re-
sources (§ 6).

We have implemented Bounded Refinement Types in LIQUID-
HASKELL [29]. The source code of the examples (with slightly
more verbose concrete syntax) is at [24]. While the construction
of these verified abstractions is possible with full dependent types,
bounded refinements keep checking automatic and decidable, use
abstract interpretation to automatically synthesize refinements (i.e.,
pre- and post-conditions and loop invariants), and most importantly
enable retroactive or gradual verification as when erase the refine-
ments, we get valid programs in the host language (§ 7). Thus,
bounded refinements point a way towards keeping our automation,
and perhaps having expressiveness too.

2. Overview
We start with a high level overview of bounded refinement types. To
make the paper self contained, we begin by recalling the notions of
abstract refinement types. Next, we introduce bounded refinements,
and show how they permit modular higher-order specifications.
Finally, we describe how they are implemented via an elaboration
process that permits automatic first-order verification.

2.1 Preliminaries

Refinement Types let us precisely specify subsets of values, by
conjoining base types with logical predicates that constrain the
values. We get decidability of type checking, by limiting these
predicates to decidable, quantifier-free, first-order logics, including
the theory of linear arithmetic, uninterpreted functions, arrays, bit-
vectors and so on. Apart from subsets of values, like the Pos and
IntGE that we saw in the introduction, we can specify contracts like
pre- and post-conditions by suitably refining the input and output
types of functions.

Preconditions are specified by refining input types. We specify
that the function assert must only be called with True, where the
refinement type TRUE contains only the singleton True:

type TRUE = {v:Bool | v ⇔ True}

assert :: TRUE → a → a
assert True x = x
assert False _ = error "Provably Dead Code"

We can specify post-conditions by refining output types. For
example, a primitive Int comparison operator leq can be assigned
a type that says that the output is True iff the first input is actually
less than or equal to the second:

leq :: x:Int → y:Int → {v:Bool | v ⇔ x ≤ y}

Refinement Type Checking proceeds by checking that at each
application, the types of the actual arguments are subtypes of those
of the function inputs, in the environment (or context) in which the
call occurs. Consider the function:

checkGE :: a:Int → b:IntGE a → Int
checkGE a b = assert cmp b

where cmp = a ‘leq ‘ b

To verify the call to assert we check that the actual parameter cmp
is a subtype of TRUE, under the assumptions given by the input types
for a and b. Via subtyping [29] the check reduces to establishing the
validity of the verification condition (VC)

a ≤ b ⇒ (cmp ⇔ a ≤ b) ⇒ v == cmp ⇒ (v ⇔
true)

The first antecedent comes from the input type of b, the second
from the type of cmp obtained from the output of leq, the third
from the actual input passed to assert, and the goal comes from
the input type required by assert. An SMT solver [17] readily es-
tablishes the validity of the above VC, thereby verifying checkGE.

First order refinements prevent modular specifications. Con-
sider the function that returns the largest element of a list:

maximum :: List Int → Int
maximum [x] = x
maximum (x:xs) = max x (maximum xs)

where max a b = if a < b then b else a

How can one write a first-order refinement type specification for
maximum that will let us verify the below code?

posMax :: List Pos → Pos
posMax = maximum

Any suitable specification would have to enumerate the situations
under which maximum may be invoked breaking modularity.

Abstract Refinements overcome the above modularity problems
[27]. The main idea is that we can type maximum by observing that it
returns one of the elements in its input list. Thus, if every element
of the list enjoys some refinement p then the output value is also
guaranteed to satisfy p. Concretely, we can type the function as:

maximum :: ∀<p::Int→Bool >. List Int <p> → Int <p>

where informally, Int<p> stands for {v:Int | p v}, and p is an
uninterpreted function in the refinement logic [17]. The signature
states that for any refinement p on Int, the input is a list of ele-
ments satisfying p and returns as output an integer satisfying p. In
the sequel, we will drop the explicit quantification of abstract re-
finements; all free abstract refinements will be implicitly quantified
at the top-level (as with classical type parameters.)

Abstract Refinements Preserve Decidability. Abstract refine-
ments do not require the use of higher-order logics. Instead, ab-
stractly refined signatures (like maximum) can be verified by view-
ing the abstract refinements p as uninterpreted functions that only
satisfy the axioms of congruence, namely:

∀ x y. x = y ⇒ p x ⇔ p y

As the quantifier free theory of uninterpreted functions is decidable
[17], abstract refinement type checking remains decidable [27].

Abstract Refinements are Automatically Instantiated at call-
sites, via the abstract interpretation framework of Liquid Typ-
ing [27]. Each instantiation yields fresh refinement variables on
which subtyping constraints are generated; these constraints are
solved via abstract interpretation yielding the instantiations. Hence,
we verify posMax by instantiating:

p 7→ λ v → 0 < v -- at posMax

2.2 Bounded Refinements

Even with abstraction, refinement types hit various expressiveness
walls. Consider the following example from [26]. find takes as
input a predicate q, a continuation k and a starting number i; it
proceeds to compute the smallest Int (larger than i) that satisfies
q, and calls k with that value. ex1 passes find a continuation that
checks that the “found” value equals or exceeds n.



ex1 :: (Int → Bool) → Int → ()
ex1 q n = find q (checkGE n) n

find q k i
| q i = k i
| otherwise = find q k (i + 1)

Verification fails as there is no way to specify that k is only called
with arguments greater than n. First, the variable n is not in scope
at the function definition and so we cannot refer to it. Second, we
could try to say that k is invoked with values greater than or equal
to i, which gets substituted with n at the call-site. Alas, due to the
currying order, i too is not in scope at the point where k’s type is
defined and so the type for k cannot depend upon i.

Can Abstract Refinements Help? Lets try to abstract over the
refinement that i enjoys, and assign find the type:

(Int → Bool) → (Int <p> → a) → Int <p> → a

which states that for any refinement p, the function takes an input
i which satisfies p and hence that the continuation is also only
invoked on a value which trivially enjoys p, namely i. At the call-
site in ex1 we can instantiate

p 7→ λv→ n ≤ v (1)

This instantiated refinement is satisfied by the parameter n, and
sufficient to verify, via function subtyping, that checkGE n will
only be called with values satisfying p, and hence larger than n.

find is ill-typed as the signature requires that at the recursive call
site, the value i+1 also satisfies the abstract refinement p. While
this holds for the example we have in mind (1), it does not hold for
all p, as required by the type of find! Concretely, {v:Int|v=i+1}
is in general not a subtype of Int<p>, as the associated VC

...⇒ p i⇒ p (i+1) (2)

is invalid – the type checker thus (soundly!) rejects find.

We must Bound the Quantification of p to limit it to refinements
satisfying some constraint, in this case that p is upward closed. In
the dependent setting, where refinements may refer to program val-
ues, bounds are naturally expressed as constraints between refine-
ments. We define a bound, UpClosed which states that p is a refine-
ment that is upward closed, i.e., satisfies ∀ x. p x ⇒ p (x+1),
and use it to type find as:

bound UpClosed (p :: Int → Bool)
= λx → p x ⇒ p (x+1)

find :: (UpClosed p) ⇒ (Int → Bool)
→ (Int <p> → a)
→ Int <p> → a

This time, the checker is able to use the bound to verify the VC (2).
We do so in a way that refinements (and thus VCs) remain quanti-
fier free and hence, SMT decidable (§ 2.4).

At the call to find in the body of ex1, we perform the instantia-
tion (1) which generates the additional VC (n ≤ x ⇒ n ≤ x+1)
by plugging in the concrete refinements to the bound constraint.
The SMT solver easily checks the validity of the VC and hence this
instantiation, thereby statically verifying ex1, i.e., that the assertion
inside checkGE cannot fail.

2.3 Bounds for Higher-Order Functions

Next, we show how bounds expand the scope of refinement typ-
ing by letting us write precise modular specifications for various
canonical higher-order functions.

Function Composition

First, consider compose. What is a modular specification for
compose that would let us verify that ex2 enjoys the given spec-
ification?

compose f g x = f (g x)

type Plus x y = {v:Int | v = x + y}
ex2 :: n:Int → Plus n 2
ex2 = incr ‘compose ‘ incr

incr :: n:Int → Plus n 1
incr n = n + 1

The challenge is to chain the dependencies between the input
and output of g and the input and output of f to obtain a relationship
between the input and output of the composition. We can capture
the notion of chaining in a bound:

bound Chain p q r = λx y z →
q x y ⇒ p y z ⇒ r x z

which states that for any x, y and z, if (1) x and y are related by q,
and (2) y and z are related by p, then (3) x and z are related by r.

We use Chain to type compose using three abstract refinements
p, q and r, relating the arguments and return values of f and g to
their composed value. (Here, c<r x> abbreviates {v:c | r x v}.)

compose :: (Chain p q r) ⇒ (y:b → c<p y>)
→ (x:a → b<q x>)
→ (w:a → c<r w>)

To verify ex2 we instantiate, at the call to compose,

p, q 7→ λx v → v = x + 1
r 7→ λx v → v = x + 2

The above instantiation satisfies the bound, as shown by the validity
of the VC derived from instantiating p, q, and r in Chain:

y == x + 1 ⇒ z == y + 1 ⇒ z == x + 2

and hence, we can check that ex2 implements its specified type.

List Filtering

Next, consider the list filter function. What type signature for
filter would let us check positives?

filter q (x:xs)
| q x = x : filter q xs
| otherwise = filter q xs

filter _ [] = []

positives :: [Int] → [Pos]
positives = filter isPos

where isPos x = 0 < x

Such a signature would have to relate the Bool returned by f with
the property of the x that it checks for. Typed Racket’s latent predi-
cates [25] account for this idiom, but are a special construct limited
to Bool-valued “type” tests, and not arbitrary invariants. Another
approach is to avoid the so-called “Boolean Blindness” that accom-
panies filter by instead using option types and mapMaybe.

We overcome blindness using a witness bound:

bound Witness p w = λx b → b ⇒ w x b ⇒ p x

which says that w witnesses the refinement p. That is, for any
boolean b such that w x b holds, if b is True then p x also holds.



filter can be given a type saying that the output values enjoy
a refinement p as long as the test predicate q returns a boolean
witnessing p:

filter :: (Witness p w) ⇒ (x:a → Bool <w x>)
→ List a
→ List a<p>

To verify positives we infer the following type and instantia-
tions for the abstract refinements p and w at the call to filter:

isPos :: x:Int → {v:Bool | v ⇔ 0 < x}
p 7→ λv → 0 < v
w 7→ λx b → b ⇔ 0 < x

List Folding

Next, consider the list fold-right function. Suppose we wish to
prove the following type for ex3:

foldr :: (a → b → b) → b → List a → b
foldr op b [] = b
foldr op b (x:xs) = x ‘op‘ foldr op b xs

ex3 :: xs:List a → {v:Int | v == len xs}
ex3 = foldr (λ_ → incr) 0

where len is a logical or measure function used to represent the
number of elements of the list in the refinement logic [29]:

measure len :: List a → Nat
len [] = 0
len (x:xs) = 1 + len xs

We specify induction as a bound. Let (1) inv be an abstract
refinement relating a list xs and the result b obtained by folding
over it, and (2) step be an abstract refinement relating the inputs
x, b and output b’ passed to and obtained from the accumulator op
respectively. We state that inv is closed under step as:

bound Inductive inv step = λx xs b b’ →
inv xs b ⇒ step x b b’ ⇒ inv (x:xs) b’

We can give foldr a type that says that the function outputs a
value that is built inductively over the entire input list:

foldr :: (Inductive inv step)
⇒ (x:a → acc:b → b<step x acc >)
→ b<inv []>
→ xs:List a
→ b<inv xs>

That is, for any invariant inv that is inductive under step, if the
initial value b is inv-related to the empty list, then the folded output
is inv-related to the input list xs.

We verify ex3 by inferring, at the call to foldr

inv 7→ λxs v → v == len xs
step 7→ λx b b’ → b’ == b + 1

The SMT solver validates the VC obtained by plugging the above
into the bound. Instantiating the signature for foldr yields pre-
cisely the output type desired for ex3.

Previously, [27] describes a way to type foldr using abstract
refinements that required the operator op to have one extra ghost ar-
gument. Bounds let us express induction without ghost arguments.

2.4 Implementation

To implement bounded refinement typing, we must solve two prob-
lems. Namely, how do we (1) check, and (2) use functions with
bounded signatures? We solve both problems via a unifying insight
inspired by the way typeclasses are implemented in Haskell.

1. A Bound Specifies a function type whose inputs are uncon-
strained, and whose output is some value that carries the re-
finement corresponding to the bound’s body.

2. A Bound is Implemented by a ghost function that returns true,
but is defined in a context where the bound’s constraint holds
when instantiated to the concrete refinements at the context.

We elaborate bounds into ghost functions satisfying the bound’s
type. To check bounded functions, we need to call the ghost func-
tion to materialize the bound constraint at particular values of in-
terest. Dually, to use bounded functions, we need to create ghost
functions whose outputs are guaranteed to satisfy the bound con-
straint. This elaboration reduces bounded refinement typing to the
simpler problem of unbounded abstract refinement typing [27]. The
formalization of our elaboration is described in § 3. Next, we illus-
trate the elaboration by explaining how it addresses the problems
of checking and using bounded signatures like compose.

We Translate Bounds into Function Types called the bound-
type where the inputs are unconstrained, and the outputs satisfy
the bound’s constraint. For example, the bound Chain used to type
compose in § 2.3, corresponds to a function type, yielding the
translated type for compose:

type ChainTy p q r
= x:a → y:b → z:c
→ {v:Bool | q x y ⇒ p y z ⇒ r x z}

compose :: (ChainTy p q r) → (y:b → c<p y>)
→ (x:a → b<q x>)
→ (w:a → c<r w>)

To Check Bounded Functions we view the bound constraints as
extra (ghost) function parameters (cf. type class dictionaries), that
satisfy the bound-type. Crucially, each expression where a subtyp-
ing constraint would be generated (by plain refinement typing) is
wrapped with a “call” to the ghost to materialize the constraint at
values of interest. For example we elaborate compose into:

compose $chain f g x =
let t1 = g x

t2 = f t1
_ = $chain x t1 t2 -- materialize

in t2

In the elaborated version $chain is the ghost parameter corre-
sponding to the bound. As is standard [21], we perform ANF-
conversion to name intermediate values, and then wrap the function
output with a call to the ghost to materialize the bound’s constraint.
Consequently, the output of compose, namely t2, is checked to be
a subtype of the specified output type, in an environment strength-
ened with the bound’s constraint instantiated at x, t1 and t2. This
subtyping reduces to a quantifier free VC:

q x t1
⇒ p t1 t2
⇒ (q x t1 ⇒ p t1 t2 ⇒ r x t2)
⇒ v == t2 ⇒ r x v

whose first two antecedents are due to the types of t1 and t2 (via
the output types of g and f respectively), and the third comes from



the call to $chain. The output value v has the singleton refinement
that states it equals to t2, and finally the VC states that the output
value v must be related to the input x via r. An SMT solver
validates this decidable VC easily, thereby verifying compose.

Our elaboration inserts materialization calls for all variables (of
the appropriate type) that are in scope at the given point. This could
introduce upto nk calls where k is the number of parameters in the
bound and n the number of variables in scope. In practice (e.g., in
compose) this number is small (e.g., 1) since we limit ourselves to
variables of the appropriate types.

To preserve semantics we ensure that none of these materializa-
tion calls can diverge, by carefully constraining the structure of the
arguments that instantiate the ghost functional parameters.

At Uses of Bounded Functions our elaboration uses the bound-
type to create lambdas with appropriate parameters that just return
true. For example, ex2 is elaborated to:

ex2 = compose (λ_ _ _ → true) incr incr

This elaboration seems too naı̈ve to be true: how do we ensure that
the function actually satisfies the bound type?

Happily, that is automatically taken care of by function sub-
typing. Recalling the translated type for compose, the elaborated
lambda (λ_ _ _ → true) is constrained to be a subtype of
ChainTy p q r. In particular, given the call site instantiation

p 7→ λy z → z == y + 1
q 7→ λx y → y == x + 1
r 7→ λx z → z == x + 2

this subtyping constraint reduces to the quantifier-free VC:

[[Γ]]⇒ true⇒ (z == y + 1)⇒ (y == x + 1)

⇒ (z == x + 2) (3)

where Γ contains assumptions about the various binders in scope.
The VC 3 is easily proved valid by an SMT solver, thereby verify-
ing the subtyping obligation defined by the bound, and hence, that
ex2 satisfies the given type.

3. Formalism
Next we formalize Bounded Refinement Types by defining a core
calculus λB and showing how it can be reduced to λP , the core
language of Abstract Refinement Types [27]. We start by defining
the syntax (§ 3.1) and semantics (§ 3.2) of λP and the syntax of
λB (§ 3.3). Next, we provide a translation from λB to λP (§ 3.4).
Then, we prove soundness by showing that our translation is se-
mantics preserving (§ 3.5). Finally, we describe how type inference
remains decidable in the presence of bounded refinements (§ 3.6).

3.1 Syntax of λP

We build our core language on top of λP , the language of Abstract
Refinement Types [27]. Figure 1 summarizes the syntax of λP , a
polymorphic λ-calculus extended with abstract refinements.

The Expressions of λP include the usual variables x, primitive
constants c, λ-abstraction λx : t.e, application e e, let bindings
let x : t = e in e, type abstraction Λα.e, and type application e [t].
(We add let-binders to λP from [27] as they can be reduced to
λ-abstractions in the usual way.) The parameter t in the type ap-
plication is a refinement type, as described shortly. Finally, λP in-
cludes refinement abstraction Λπ : t.e, which introduces a refine-
ment variable π (with its type t), which can appear in refinements
inside e, and the corresponding refinement application e [φ] that
substitutes an abstract refinement with the parametric refinement
φ, i.e., refinements r closed under lambda abstractions.

Expressions e ::= x | c | λx : t.e | e x
| let x : t = e in e
| Λα.e | e [t]
| Λπ : t.e | e [φ]

Constants c ::= true | false | crash
| 0 | 1 | −1 | . . .

Parametric Refinements φ ::= r | λx :b.φ

Predicates p ::= c | ¬p | p = p | . . .
Atomic Refinements a ::= p | π x

Refinements r ::= a | a ∧ r | a⇒ r

Basic Types b ::= Int | Bool | α
Types t ::= {v : b | r}

| {v : (x : t)→ t | r}
Bounded Types ρ ::= t

Schemata σ ::= ρ | ∀α.σ | ∀π : t.σ

Figure 1. Syntax of λP

Bounded Types ρ ::= t | {φ} ⇒ ρ

Expressions e ::= . . . | Λ{φ}.e | e{φ}

Figure 2. Extending Syntax of λP to λB

The Primitive Constants of λP include true, false, 0, 1, -1, etc..
In addition, we include a special untypable constant crash that
models “going wrong”. Primitive operations return a crash when
invoked with inputs outside their domain, e.g., when / is invoked
with 0 as the divisor, or when an assert is applied to false.

Atomic Refinements a are either concrete or abstract refine-
ments. A concrete refinement p is a boolean valued expression
(such as a constant, negation, equality, etc.) drawn from a strict
subset of the language of expressions which includes only terms
that (a) neither diverge nor crash, and (b) can be embedded into an
SMT decidable refinement logic including the quantifier free the-
ory of linear arithmetic and uninterpreted functions [29]. An ab-
stract refinement π x is an application of a refinement variable π
to a sequence of program variables. A refinement r is either a con-
junction or implication of atomic refinements. To enable inference,
we only allow implications to appear within bounds φ (§ 3.6).

The Types of λP written t include basic types, dependent func-
tions and schemata quantified over type and refinement variables α
and π respectively. A basic type is one of Int, Bool, or a type vari-
able α. A refined type t is either a refined basic type {v : b | r},
or a dependent function type {v : (x : t)→ t | r} where the pa-
rameter x can appear in the refinements of the output type. (We
include refinements for functions, as refined type variables can be
replaced by function types. However, typechecking ensures these
refinements are trivially true.) In λP bounded types ρ are just a
synonym for types t. Finally, schemata are obtained by quantifying
bounded types over type and refinement variables.

3.2 Semantics of λP

Figure 3 summarizes the static semantics of λP as described in
[27]. Unlike [27] that syntactically separates concrete (p) from
abstract (π x) refinements, here, for simplicity, we merge both
concrete and abstract refinements to atomic refinements a.

A type environment Γ is a sequence of type bindings x : σ. We
use environments to define three kinds of judgments:



Well-Formedness Γ ` σ

Γ, v : b ` r : Bool

Γ ` {v : b | r}
WF-BASE

Γ ` r : Bool Γ ` tx Γ, x : tx ` t
Γ ` {v : (x : tx)→ t | r}

WF-FUN

Γ, π : t ` σ
Γ ` ∀π : t.σ

WF-ABS-π Γ ` σ
Γ ` ∀α.σ WF-ABS-α

Subtyping Γ ` σ1 � σ2

([[Γ]]⇒ [[r1]]⇒ [[r2]]) is valid
Γ ` {v : b | r1} � {v : b | r2}

�-BASE
Γ ` t2 � t1 Γ, x2 : t2 ` t′1[x2/x1] � t′2

Γ ` {v : (x1 : t1)→ t′1 | r1} � {v : (x2 : t2)→ t′2 | true}
�-FUN

Γ, π : t ` σ1 � σ2

Γ ` ∀π : t.σ1 � ∀π : t.σ2
�-RVAR

Γ ` σ1 � σ2

Γ ` ∀α.σ1 � ∀α.σ2
�-POLY

Type Checking Γ ` e : σ

Γ ` e : σ2 Γ ` σ2 � σ1 Γ ` σ1

Γ ` e : σ1
T-SUB

Γ ` ex : tx Γ, x : tx ` e : t Γ ` t
Γ ` let x := ex in e : t

T-LET

x : {v : b | r} ∈ Γ

Γ ` x : {v : b | v = x}
T-VAR-BASE

x : t ∈ Γ
Γ ` x : t

T-VAR
Γ ` c : tc (c)

T-CONST

Γ ` e1 : (x : tx)→ t Γ ` e2 : tx

Γ ` e1 e2 : t[e2/x]
T-APP

Γ, x : tx ` e : t Γ ` tx
Γ ` λx : tx.e : (x : tx)→ t

T-FUN
Γ, α ` e : σ

Γ ` Λα.e : ∀α.σ T-GEN

Γ ` e : ∀π : t.σ Γ ` λx : tx.r
′ : t

Γ ` e
[
λx : tx.r

′] : σ[λx : tx.r
′/π]

T-PINST
Γ, π : t ` e : σ Γ ` t
Γ ` Λπ : t.e : ∀π : t.σ

T-PGEN
Γ ` e : ∀α.σ Γ ` t

Γ ` e [τ ] : σ[t/α]
T-INST

Figure 3. Static Semantics: Well-formedness, Subtyping and Type Checking

• Well-formedness judgments (Γ ` σ) state that a type schema
σ is well-formed under environment Γ. That is, the judgment
states that the refinements in σ are boolean expressions in the
environment Γ.

• Subtyping judgments (Γ ` σ1 � σ2) state that the type schema
σ1 is a subtype of the type schema σ2 under environment Γ.
That is, the judgment states that when the free variables of σ1

and σ2 are bound to values described by Γ, the values described
by σ1 are a subset of those described by σ2.

• Typing judgments (Γ ` e : σ) state that the expression e has
the type schema σ under environment Γ. That is, the judgment
states that when the free variables in e are bound to values de-
scribed by Γ, the expression e will evaluate to a value described
by σ.

The Well-formedness rules check that the concrete and abstract
refinements are indeed Bool-valued expressions in the appropriate
environment. The key rule is WF-BASE, which checks that the
refinement r is boolean.

The Subtyping rules stipulate when the set of values described
by schema σ1 is subsumed by (i.e., contained within) the values
described by σ2. The rules are standard except for �-BASE, which
reduces subtyping of basic types to validity of logical implications,
by translating the refinements r and the environment Γ into logical
formulas:

[[r]]
.
= r [[Γ]]

.
=
∧
{r[x/v] | (x, {v : b | r}) ∈ Γ}

Recall that we ensure that the refinements r belong to a decidable
logic so that validity checking can be performed by an off-the-self
SMT solver.

Type Checking Rules are standard except for T-PGEN and T-
PINST, which pertain to abstraction and instantiation of abstract
refinements. The rule T-PGEN is the same as T-FUN: we simply
check the body e in the environment extended with a binding
for the refinement variable π. The rule T-PINST checks that the
concrete refinement is of the appropriate (unrefined) type τ , and
then replaces all (abstract) applications of π inside σ with the
appropriate (concrete) refinement r′ with the parameters x replaced
with arguments at that application. In [27] we prove the following
soundness result for λP which states that well-typed programs
cannot crash:

Lemma (Soundness of λP [27]). If ∅ ` e : σ then e 6↪→?
P crash.

3.3 Syntax of λB

Figure 2 shows how we obtain the syntax for λB by extending the
syntax of λP with bounded types.

The Types of λB extend those of λP with bounded types ρ, which
are the types t guarded by bounds φ.

The Expressions of λB extend those of λP with abstraction over
bounds Λ{φ}.e and application of bounds e{φ}. Intuitively, if an
expression e has some type ρ then Λ{φ}.e has the type {φ} ⇒ ρ.
We include an explicit bound application form e{φ} to simplify the
formalization; these applied bounds are automatically synthesized
from the type of e, and are of the form λx :ρ.true.

Notation. We write b, b〈π x〉, {v : b〈π x〉 | r} to abbreviate
{v : b | true}, {v : b | π x v}, {v : b | r ∧ π x v} respectively. We
say a type or schema is non-refined if all the refinements in it are



true. We get the shape of a type t (i.e., the System-F type) by the
function Shape(t) defined:

Shape({v : b | r}) .
= b

Shape({v : (x : t1)→ t2 | r})
.
= Shape(t1)→ Shape(t2)

3.4 Translation from λB to λP

Next, we show how to translate a term from λB to one in λP .
We assume, without loss of generality that the terms in λB are in
Administrative Normal Form (i.e., all applications are to variables.)

Bounds Correspond To Functions that explicitly “witness” the
fact that the bound constraint holds at a given set of “input” values.
That is we can think of each bound as a universally quantified re-
lationship between various (abstract) refinements; by “calling” the
function on a set of input values x1, . . . , xn, we get to instantiate
the constraint for that particular set of values.

Bound Environments Φ are used by our translation to track the
set of bound-functions (names) that are in scope at each program
point. These names are distinct from the regular program variables
that will be stored in Variable Environments Γ. We give bound
functions distinct names so that they cannot appear in the regular
source, only in the places where calls are inserted by our trans-
lation. The translation ignores refinements entirely; both environ-
ments map their names to their non-refined types.

The Translation is formalized in Figure 4 via a relation Γ; Φ `
e  e′, that translates the expression e in λB into e′ in λP . Most
of the rules in figure 4 recursively translate the sub-expressions.
Types that appear inside expressions are syntactically restricted to
not contain bounds, thus types inside expressions do not require
translation. Here we focus on the three interesting rules:

1. At bound abstractions Λ{φ}.e we convert the bound φ into a
bound-function parameter of a suitable type,

2. At variable binding sites i.e., λ- or let-bindings, we use the
bound functions to materialize the bound constraints for all the
variables in scope after the binding,

3. At bound applications e{φ} we provide regular functions that
witness that the bound constraints hold.

1. Rule CABS translates bound abstractions Λ{φ}.e into a plain
λ-abstraction. In the translated expression λf :〈|φ|〉.e′ the bound
becomes a function named f with type 〈|φ|〉 defined:

〈|λx :b.φ|〉 .
= (x : b)→ 〈|φ|〉

〈|r|〉 .
= {v : Bool | r}

That is, 〈|φ|〉 is a function type whose final output carries the refine-
ment corresponding to the constraint in φ. Note that the translation
generates a fresh name f for the bound function (ensuring that it
cannot be used in the regular code) and saves it in the bound envi-
ronment Φ to let us materialize the bound constraint when translat-
ing the body e of the abstraction.

2. Rules FUN and LET materialize bound constraints at variable
binding sites (λ-abstractions and let-bindings respectively.) If we
view the bounds as universally quantified constraints over the (ab-
stract) refinements, then our translation exhaustively and eagerly
instantiates the constraints at each point that a new binder is in-
troduced into the variable environment, over all the possible can-
didate sets of variables in scope at that point. The instantiation is

Variable Environment Γ ::= ∅ | Γ, x :τ

Bound Environment Φ ::= ∅ | Φ, x :τ

Translation Γ; Φ ` e e

Γ; Φ ` x x
VAR

Γ; Φ ` c c
CON

Γ′ = Γ, x :Shape(t) Γ′; Φ ` e e′

Γ; Φ ` λx : t.e λx : t.Inst(Γ′,Φ, e′)
FUN

Γ; Φ ` ex  e′x Γ′ = Γ, x :Shape(t) Γ′; Φ ` e e′

Γ; Φ ` let x : t = ex in e let x :τ = e′x in Inst(Γ′,Φ, e′)
LET

Γ; Φ ` e1  e′1 Γ; Φ ` e2  e′2

Γ; Φ ` e1 e2  e′1 e
′
2

APP

Γ; Φ ` e e′

Γ; Φ ` Λα.e Λα.e′
TABS

Γ; Φ ` e e′

Γ; Φ ` e [t] e′ [t]
TAPP

Γ; Φ ` e e′

Γ; Φ ` Λπ : t.e Λπ : t.e′
PABS

Γ; Φ ` e1  e′2 Γ; Φ ` e1  e′2

Γ; Φ ` e1 [e2] e′1 [e′2]
PAPP

fresh f Γ; Φ, f :Shape(〈|φ|〉) ` e e′

Γ; Φ ` Λ{φ}.e λf :〈|φ|〉.e′
CABS

Γ; Φ ` e e′

Γ; Φ ` e{φ} e′ Const(φ)
CAPP

Figure 4. Translation Rules from λB to λP+let

performed by Inst(Γ,Φ, e)

Inst(Γ,Φ, e)
.
= Wrap(e, Instances(Γ,Φ))

Wrap(e, {e1, . . . , en})
.
= let t1 = e1 in . . . let tn = en in e

(where ti are fresh Bool binders)

Instances(Γ,Φ)
.
= { f x | f :τ ← Φ, x : ← Γ

, Γ, f :τ `B f x :Bool}
The function takes the environments Γ and Φ, an expression e and
a variable x of type t and uses let-bindings to materialize all the
bound functions in Φ that accept the variable x. Here, Γ `B e :τ is
the standard typing derivation judgment for the non-refined System
F and so we elide it for brevity.

3. Rule CAPP translates bound applications e{φ} into plain λ
abstractions that witness that the bound constraints hold. That is, as
within e, bounds are translated to a bound function (parameter) of
type 〈|φ|〉, we translate φ into a λ-term that, via subtyping must have
the required type 〈|φ|〉. We construct such a function via Const(φ)
that depends only on the shape of the bound, i.e., the non-refined
types of its parameters (and not the actual constraint itself).

Const(r)
.
= true

Const(λx :b.φ)
.
= λx :b.Const(φ)

This seems odd: it is simply a constant function, how can it possi-
bly serve as a bound? The answer is that subtyping in the translated
λP term will verify that in the context in which the above con-
stant function is created, the singleton true will indeed carry the
refinement corresponding to the bound constraint, making this syn-
thesized constant function a valid realization of the bound function.



Recall that in the example ex2 of the overview (§ 2.4) the subtyping
constraint that decides is the constant true is a valid bound reduces
to the equation 3 that is a tautology.

3.5 Soundness

The Small-Step Operational Semantics of λB are defined by
extending a similar semantics for λP which is a standard call-
by-value calculus where abstract refinements are boolean valued
functions [27]. Let ↪→P denote the transition relation defining the
operational semantics of λP and ↪→?

P denote the reflexive transitive
closure of ↪→P . We thus obtain the transition relation ↪→B :

(Λ{φ}.e){φ} ↪→B e e ↪→B e′, if e ↪→P e′

Let ↪→?
B denote the reflexive transitive closure of ↪→B .

The Translation is Semantics Preserving in the sense that if a
source term e of λB reduces to a constant then the translated variant
of e′ also reduces to the same constant:

Lemma. If ∅; ∅ ` e e′ and e ↪→?
B c then e′ ↪→?

P c.

The Soundness of λB follows by combining the above Semantics
Preservation Lemma with the soundness of λP .

To Typecheck a λB program e we translate it into a λP program
e′ and then type check e′; if the latter check is safe, then we are
guaranteed that the source term e will not crash:

Theorem (Soundness). If ∅; ∅ ` e  e′ and ∅ ` e′ : σ then
e 6↪→?

B crash.

3.6 Inference

A critical feature of bounded refinements is that we can au-
tomatically synthesize instantiations of the abstract refinements
by: (1) generating templates corresponding to the unknown types
where fresh variables κ denote the unknown refinements that an
abstract refinement parameter π is instantiated with, (2) generating
subtyping constraints over the resulting templates, and (3) solving
the constraints via abstract interpretation.

Inference Requires Monotonic Constraints. Abstract interpreta-
tion only works if the constraints are monotonic [5], which in this
case means that the κ variables, and correspondingly, the abstract
refinements π must only appear in positive positions within refine-
ments (i.e., not under logical negations). The syntax of refinements
shown in Figure 1 violates this requirement via refinements of the
form π x⇒ r.

We restrict implications to bounds i.e., prohibit them from ap-
pearing elsewhere in type specifications. Consequently, the impli-
cations only appear in the output type of the (first order) “ghost”
functions that bounds are translated to. The resulting subtyping
constraints only have implications inside super-types, i.e., as:

Γ ` {v:b | a} � {v:b | a1 ⇒ · · · ⇒ an ⇒ aq}

By taking into account the semantics of subtyping, we can push the
antecedents into the environment, i.e., transform the above into an
equivalent constraint in the form:

Γ,
{
x1:b1 | a′1

}
, . . . ,

{
xn:bn | a′n

}
`
{
v:b | a′

}
�
{
v:b | a′q

}
where all the abstract refinements variables π (and hence instance
variables κ) appear positively, ensuring that the constraints are
monotonic, hence permitting inference via Liquid Typing [21].

Title Director Year Star
“Birdman” “Iñárritu” 2014 8.1
“Persepolis” “Paronnaud” 2007 8.0

Figure 5. Example Table of Movies

4. A Refined Relational Database
Next, we use bounded refinements to develop a library for relational
algebra, which we use to enable generic, type safe database queries.
A relational database stores data in tables, that are a collection of
rows, which in turn are records that represent a unit of data stored
in the table. The tables’s schema describes the types of the values in
each row of the table. For example, the table in Figure 5 organizes
information about movies, and has the schema:

Title:String , Dir:String , Year:Int , Star:Double

First, we show how to write type safe extensible records that
represent rows, and use them to implement database tables (§ 4.1).
Next, we show how bounds let us specify type safe relational
operations and how they may be used to write safe database
queries (§ 4.2).

4.1 Rows and Tables

We represent the rows of a database with dictionaries, which are
maps from a set of keys to values. In the sequel, each key corre-
sponds to a column, and the mapped value corresponds to a valua-
tion of the column in a particular row.

A dictionary Dict <r> k v maps a key x of type k to a value of
type v that satisfies the property r x

type Range k v = k → v → Bool

data Dict k v <r :: Range k v> = D {
dkeys :: [k]

, dfun :: x:{k | x ∈ elts dkeys} → v<r x>
}

Each dictionary d has a domain dkeys i.e., the list of keys for which
d is defined and a function dfun that is defined only on elements x
of the domain dkeys. For each such element x, dfun returns a value
that satisfies the property r x.

Propositions about the theory of sets can be decided efficiently
by modern SMT solvers. Hence we use such propositions within
refinements [28]. The measures (logical functions) elts and keys
specify the set of keys in a list and a dictionary respectively:

elts :: [a] → Set a
elts ([]) = ∅
elts (x:xs) = {x} ∪ elts xs

keys :: Dict k v → Set k
keys d = elts (dkeys d)

Domain and Range of dictionaries. In order to precisely define
the domain (e.g., columns) and range (e.g., values) of a dictionary
(e.g., row), we define the following aliases:

type RD k v <dom :: Dom k v, rng :: Range k v>
= {v:Dict <rng > k v | dom v}

type Dom k v = Dict k v → Bool

We may instantiate dom and rng with predicates that precisely
describe the values contained with the dictionary. For example,



RD < λd → keys d == {"x"}
, λk v→ 0 < v > String Int

describes dictionaries with a single field "x" whose value (as deter-
mined by dfun) is stricly greater than 0. We will define schemas by
appropriately instantiating the abstract refinements dom and rng.

An empty dictionary has an empty domain and a function that
will never be called:

empty :: RD <emptyRD , rFalse > k v
empty = D [] (λx → error "calling empty")

emptyRD = λd → keys d == ∅
rFalse = λk v → false

We define singleton maps as dependent pairs x := y which de-
note the mapping from x to y:

data P k v <r :: Range k v>
= (:=) {pk :: k, pv :: v<r pk >}

Thus, key := val has type P<r> k v only if r key val.

A dictionary may be extended with a singleton binding (which
maps the new key to its new value).

(+=) :: bind:P<r> k v
→ dict:RD<pTrue , r> k v
→ RD <addKey (pk bind) dict , r> k v

(k := v) += (D ks f)
= D (k:ks)

(λi → if i == k then v else f i)

addKey = λk d d’ → keys d’ == {k} ∪ keys d
pTrue = λ_ → true

Thus, (k := v) += d evaluates to a dictionary d’ that extends d
with the mapping from k to v. The type of (+=) constrains the
new binding bind, the old dictionary dict and the returned value
to have the same range invariant r. The return type states that the
output dictionary’s domain is that of the domain of dict extended
by the new key (pk bind).

To model a row in a table i.e., a schema, we define the unrefined
(Haskell) type Schema, which is a dictionary mapping Strings, i.e.,
the names of the fields of the row, to elements of some universe
Univ containing Int, String and Double. (A closed universe is not
a practical restriction; most databases support a fixed set of types.)

data Univ = I Int | S String | D Double

type Schema = RD String Univ

We refine Schema with concrete instantiations for dom and rng,
in order to recover precise specifications for a particular database.
For example, MovieSchema is a refined Schema that describes the
rows of the Movie table in Figure 5:

type MovieSchema = RD <md, mr> String Univ

md = λd →
keys d={"year","star","dir","title"}

mr = λk v →
(k = "year" ⇒ isI v && 1888 < toI v)

&& (k = "star" ⇒ isD v && 0 ≤ toD v ≤ 10)
&& (k = "dir" ⇒ isS v)
&& (k = "title" ⇒ isS v)

isI (I _) = True

isI _ = False

toI :: {v: Univ | isI v} → Int
toI (I n) = n

...

The predicate md describes the domain of the movie schema, re-
stricting the keys to exactly "year", "star", "dir", and "title".
The range predicate mr describes the types of the values in the
schema: a dictionary of type MovieSchema must map "year" to
an Int, "star" to a Double, and "dir" and "title" to Strings.
The range predicate may be used to impose additional constraints
on the values stored in the dictionary. For instance, mr restricts the
year to be not only an integer but also greater than 1888.

We populate the Movie Schema by extending the empty dictio-
nary with the appropriate pairs of fields and values. For example,
here are the rows from the table in Figure 5

movie1 , movie2 :: MovieSchema
movie1 = ("title" := S "Persepolis")

+= ("dir" := S "Paronnaud")
+= ("star" := D 8)
+= ("year" := I 2007)
+= empty

movie2 = ("title" := S "Birdman")
+= ("star" := D 8.1)
+= ("dir" := S "Inarritu")
+= ("year" := I 2014)
+= empty

Typing movie1 (and movie2) as MovieSchema boils down
to proving: That keys movie1 = {"year", "star", "dir",
"title"}; and that each key is mapped to an appropriate value
as determined by mr. For example, declaring movie1’s year to be
I 1888 or even misspelling "dir" as "Dir" will cause the movie1
to become ill-typed. As the (sub)typing relation depends on logical
implication (unlike in HList based approaches [12]) key ordering
does not affect type-checking; in movie1 the star field is added be-
fore the director, while movie2 follows the opposite order.

Database Tables are collections of rows, i.e., collections of re-
fined dictionaries. We define a type alias RT s (Refined Table) for
the list of refined dictionaries from the field type String to the
Universe.

type RT (s :: {dom::TDom , rng:: TRange })
= [RD <s.dom , s.rng > String Univ]

type TDom = Dom String Univ
type TRange = Range String Univ

For brevity we pack both the domain and the range refinements
into a record s that describes the schema refinement; i.e., each row
dictionary has domain s.dom and range s.rng.

For example, the table from Figure 5 can be represented as a
type MoviesTable which is an RT refined with the domain and
range md and mr described earlier (§ 4.1):

type MoviesTable = RT {dom = md, rng = mr}

movies :: MoviesTable
movies = [movie1 , movie2]

4.2 Relational Algebra

Next, we describe the types of the relational algebra operators
which can be used to manipulate refined rows and tables. For space
reasons, we show the types of the basic relational operators; their
(verified) implementations can be found online [24].



union :: RT s → RT s → RT s
diff :: RT s → RT s → RT s
select :: (RD s → Bool) → RT s → RT s
project :: ks:[ String] → RTSubEqFlds ks s

→ RTEqFlds ks s
product :: ( Disjoint s1 s2, Union s1 s2 s

, Range s1 s, Range s2 s)
⇒ RT s1 → RT s2 → RT s

union and diff compute the union and difference, respectively
of the (rows of) two tables. The types of union and diff state that
the operators work on tables with the same schema s and return a
table with the same schema.

select takes a predicate p and a table t and filters the rows of
t to those which that satisfy p. The type of select ensures that p
will not reference columns (fields) that are not mapped in t, as the
predicate p is constrained to require a dictionary with schema s.

project takes a list of String fields ks and a table t and projects
exactly the fields ks at each row of t. project’s type states that for
any schema s, the input table has type RTSubEqFlds ks s i.e., its
domain should have at least the fields ks and the result table has
type RTEqFlds ks s, i.e., its domain has exactly the elements ks.

type RTSubEqFlds ks s
= RT s{dom = λz → elts ks ⊆ keys z}

type RTEqFlds ks s
= RT s{dom = λz → elts ks == keys z}

The range of the argument and the result tables is the same and
equal to s.rng.

product takes two tables as input and returns their (Cartesian)
product. It takes two Refined Tables with schemata s1 and s2
and returns a Refined Table with schema s. Intuitively, the output
schema is the “concatenation” of the input schema; we formalize
this notion using bounds: (1) Disjoint s1 s2 says the domains of
s1 and s2 should be disjoint, (2) Union s1 s2 s says the domain
of s is the union of the domains of s1 and s2, (3) Range s1 s (resp.
Range s2 s2) says the range of s1 should imply the result range
s; together the two imply the output schema s preserves the type of
each key in s1 or s2.

bound Disjoint s1 s2 = λx y →
s1.dom x ⇒ s2.dom y ⇒ keys x ∩ keys y == ∅

bound Union s1 s2 s = λx y v →
s1.dom x ⇒ s2.dom y

⇒ keys v == keys x ∪ keys y
⇒ s.dom v

bound Range si s = λx k v →
si.dom x ⇒ k ∈ keys x ⇒ si.rng k v

⇒ s.rng k v

Thus, bounded refinements enable the precise typing of re-
lational algebra operations. They let us describe precisely when
union, intersection, selection, projection and products can be com-
puted, and let us determine, at compile time the exact “shape” of
the resulting tables.

We can query Databases by writing functions that use the rela-
tional algebra combinators. For example, here is a query that re-
turns the “good” titles – with more than 8 stars – from the movies
table 1

1 More example queries can be found online [24]

good_titles = project ["title"] $ select (λd →
toDouble (dfun d $ "star") > 8

) movies

Finally, note that our entire library – including records, tables,
and relational combinators – is built using vanilla Haskell i.e., with-
out any type level computation. All schema reasoning happens at
the granularity of the logical refinements. That is if the refinements
are erased from the source, we still have a well-typed Haskell pro-
gram but of course, lose the safety guarantees about operations
(e.g., “dynamic” key lookup) never failing at run-time.

5. A Refined IO Monad
Next, we illustrate the expressiveness of Bounded Refinements
by showing how they enable the specification and verification of
stateful computations. We show how to (1) implement a refined
state transformer (RIO) monad, where the transformer is indexed
by refinements corresponding to pre- and post-conditions on the
state (§ 5.1), (2) extend RIO with a set of combinators for imperative
programming, i.e., whose types precisely encode Floyd-Hoare style
program logics (§ 5.2) and (3) use the RIO monad to write safe
scripts where the type system precisely tracks capabilities and
statically ensures that functions only access specific resources (§ 6).

5.1 The RIO Monad

The RIO data type describes stateful computations. Intuitively, a
value of type RIO a denotes a computation that, when evaluated
in an input World produces a value of type a (or diverges) and a
potentially transformed output World. We implement RIO a as an
abstractly refined type (as described in [27])

type Pre = World → Bool
type Post a = World → a → World → Bool

data RIO a <p :: Pre , q :: Post a> = RIO {
runState :: w:World <p> → (x:a, World <q w x>)

}

That is, RIO a is a function World→(a, World), where World is
a primitive type that represents the state of the machine i.e., the
console, file system, etc. This indexing notion is directly inspired
by the method of [8] (also used in [16]).

Our Post-conditions are Two-State Predicates that relate the
input- and output- world (as in [16]). Classical Floyd-Hoare logic,
in contrast, uses assertions which are single-state predicates. We
use two-states to smoothly account for specifications for stateful
procedures. This increased expressiveness makes the types slightly
more complex than a direct one-state encoding which is, of course
also possible with bounded refinements.

An RIO computation is parameterized by two abstract refine-
ments: (1) p :: Pre, which is a predicate over the input world,
i.e., the input world w satisfies the refinement p w; and (2) q ::
Post a, which is a predicate relating the output world with the in-
put world and the value returned by the computation, i.e., the output
world w’ satisfies the refinement q w x w’ where x is the value re-
turned by the computation. Next, to use RIO as a monad, we define
bind and return functions for it, that satisfy the monad laws.

The return operator yields a pair of the supplied value z and the
input world unchanged:

return :: z:a → RIO <p, ret z> a
return z = RIO $ λw → (z, w)

ret z = λw x w’ → w’ == w && x == z



The type of return states that for any precondition p and any
supplied value z of type a, the expression return z is an RIO
computation with precondition p and a post-condition ret z. The
postcondition states that: (1) the output World is the same as the
input, and (2) the result equals to the supplied value z. Note that as
a consequence of the equality of the two worlds and congruence,
the output world w’ trivially satisfies p w’.

The >>= Operator is defined in the usual way. However, to type
it precisely, we require bounded refinements.

( >>= ) :: (Ret q1 r, Seq r q1 p2, Trans q1 q2 q)
⇒ m:RIO <p, q1> a
→ k:(x:a<r> → RIO <p2 x, q2 x> b)
→ RIO <p, q> b

(RIO g) >>= f = RIO $ λx →
case g x of { (y, s) → runState (f y) s }

The bounds capture various sequencing requirements (c.f. the
Floyd-Hoare rules of consequence). First, the output of the first ac-
tion m, satisfies the refinement required by the continuation k;

bound Ret q1 r = λw x w’ → q1 w x w’ ⇒ r x

Second, the computations may be sequenced, i.e., the postcondition
of the first action m implies the precondition of the continuation k
(which may be dependent upon the supplied value x):

bound Seq q1 p2 = λw x w’ →
q1 w x w’ ⇒ p2 x w’

Third, the transitive composition of the two computations, implies
the final postcondition:

bound Trans q1 q2 q = λw x w’ y w’’ →
q1 w x w’ ⇒ q2 x w’ y w’’ ⇒ q w y w’’

Both type signatures would be impossible to use if the program-
mer had to manually instantiate the abstract refinements (i.e., pre-
and post-conditions.) Fortunately, Liquid Type inference generates
the instantiations making it practical to use LIQUIDHASKELL to
verify stateful computations written using do-notation.

5.2 Floyd-Hoare Logic in the RIO Monad

Next, we use bounded refinements to derive an encoding of Floyd-
Hoare logic, by showing how to read and write (mutable) variables
and typing higher order ifM and whileM combinators.

We Encode Mutable Variables as fields of the World type. For
example, we might encode a global counter as a field:

data World = { ... , ctr :: Int , ... }

We encode mutable variables in the refinement logic using Mc-
Carthy’s select and update operators for finite maps and the as-
sociated axiom:

select :: Map k v → k → v
update :: Map k v → k → v → Map k v

∀ m, k1 , k2 , v.
select (update m k1 v) k2

== (if k1 == k2 then v else select m k2 v)

The quantifier free theory of select and update is decidable and
implemented in modern SMT solvers [1].

We Read and Write Mutable Variables via suitable “get” and
“set” actions. For example, we can read and write ctr via:

getCtr :: RIO <pTrue , rdCtr > Int
getCtr = RIO $ λw → (ctr w, w)

setCtr :: Int → RIO <pTrue , wrCtr n> ()
setCtr n = RIO $ λw → ((), w { ctr = n })

Here, the refinements are defined as:

pTrue = λw → True
rdCtr = λw x w’ → w’ == w && x == select w ctr
wrCtr n = λw _ w’ → w’ == update w ctr n

Hence, the post-condition of getCtr states that it returns the current
value of ctr, encoded in the refinement logic with McCarthy’s
select operator while leaving the world unchanged. The post-
condition of setCtr states that World is updated at the address
corresponding to ctr, encoded via McCarthy’s update operator.

The ifM combinator takes as input a cond action that returns a
Bool and, depending upon the result, executes either the then or
else actions. We type it as:

bound Pure g = λw x v →(g w x v ⇒ v == w)
bound Then g p1 = λw v → (g w True v ⇒ p1 v)
bound Else g p2 = λw v → (g w False v ⇒ p2 v)

ifM :: (Pure g, Then g p1, Else g p2)
⇒ RIO <p , g> Bool -- cond
→ RIO <p1, q> a -- then
→ RIO <p2, q> a -- else
→ RIO <p , q> a

The abstract refinements and bounds correspond exactly to the hy-
potheses in the Floyd-Hoare rule for the if statement. The bound
Pure g states that the cond action may access but does not modify
the World, i.e., the output is the same as the input World. (In clas-
sical Floyd-Hoare formulations this is done by syntactically sepa-
rating terms into pure expressions and side effecting statements).
The bound Then g p1 and Else g p2 respectively state that the
preconditions of the then and else actions are established when
the cond returns True and False respectively.

We can use ifM to implement a stateful computation that per-
forms a division, after checking the divisor is non-zero. We specify
that div should not be called with a zero divisor. Then, LIQUID-
HASKELL verifies that div is called safely:

div :: Int → {v:Int | v /= 0} → Int

ifTest :: RIO Int
ifTest = ifM nonZero divX (return 10)

where nonZero = getCtr >>= return . (/= 0)
divX = getCtr >>= return . (div 42)

Verification succeeds as the post-condition of nonZero is in-
stantiated to λ_ b w →b ⇔ select w ctr /= 0 and the pre-
condition of divX’s is instantiated to λw →select w ctr /= 0,
which suffices to prove that div is only called with non-zero values.

The whileM combinator formalizes loops as RIO computations:

whileM :: (OneState q, Inv p g b, Exit p g q)
⇒ RIO <p, g> Bool -- cond
→ RIO <pTrue , b> () -- body
→ RIO <p, q> ()

As with ifM, the hypotheses of the Floyd-Hoare derivation rule
become bounds for the signature. Given a condition with pre-
condition p and post-condition g and body with a true precondi-
tion and post-condition b, the computation whileM cond body has



pread , pwrite , plookup , pcontents ,
pcreateD , pcreateF , pcreateFP :: Priv → Bool

active :: World → Set FH
caps :: World → Map FH Priv

pset p h = λw → p (select (caps w) h) &&
h ∈ active w

Figure 6. Privilege Specification

precondition p and post-condition q as long as the bounds (cor-
responding to the Hypotheses in the Floyd-Hoare derivation rule)
hold. First, p should be a loop invariant; i.e., when the condition
returns True the post-condition of the body b must imply the p:

bound Inv p g b = λw w’ w’’ →
p w ⇒ g w True w’ ⇒ b w’ () w’’ ⇒ p w’’

Second, when the condition returns False the invariant p should
imply the loop’s post-condition q:

bound Exit p g q = λw w’ →
p w ⇒ g w False w’ ⇒ q w () w’

Third, to avoid having to transitively connect the guard and the
body, we require that the loop post-condition be a one-state predi-
cate, independent of the input world (as in Floyd-Hoare logic):

bound OneState q = λw w’ w’’ →
q w () w’’ ⇒ q w’ () w’’

We can use whileM to implement a loop that repeatedly decre-
ments a counter while it is positive, and to then verify that if it was
initially non-negative, then at the end the counter is equal to 0.

whileTest :: RIO <posCtr , zeroCtr > ()
whileTest = whileM gtZeroX decr

where gtZeroX = getCtr >>= return . (> 0)

posCtr = λw → 0 ≤ select w ctr
zeroCtr = λ_ _ w’ → 0 == select w ctr

Where the decrement is implemented by decr with type:

decr :: RIO <pTrue , decCtr > ()

decCtr = λw _ w’ →
w’ == update w ctr (( select ctr w) - 1)

LIQUIDHASKELL verifies that at the end of whileTest the counter
is zero (i.e., the post-condition zeroCtr) by instantiating suitable
(i.e., inductive) refinements for this particular use of whileM.

6. Capability Safe Scripting via RIO

Next, we describe how we use the RIO monad to reason about shell
scripting, inspired by the Shill [15] programming language.

Shill is a scripting language that restricts the privileges with
which a script may execute by using capabilities and dynamic con-
tract checking [15] . Capabilities are run-time values that witness
the right to use a particular resource (e.g., a file). A capability is
associated with a set of privileges, each denoting the permission
to use the capability in a particular way (such as the permission
to write to a file). A contract for a Shill procedure describes the
required input capabilities and any output values. The Shill run-
time guarantees that system resources are accessed in the manner
described by its contract.

In this section, we turn to the problem of preventing Shill
runtime failures. (In general, the verification of file system resource
usage is a rich topic outside the scope of this paper.) That is,
assuming the Shill runtime and an API as described in [15],
how can we use Bounded Refinement Types to encode scripting
privileges and reason about them statically?

We use RIO types to specify Shill’s API operations thereby
providing compile-time guarantees about privilege and resource
usage. To achieve this, we: connect the state (World) of the RIO
monad with a privilege specification denoting the set of privileges
that a program may use (§ 6.1); specify the file system API in terms
of this abstraction (§ 6.2); and use the above to specify and verify
the particular privileges that a client of the API uses (§ 6.3).

6.1 Privilege Specification

Figure 6 summarizes how we specify privileges inside RIO. We
use the type FH to denote a file handles, analogous to Shill’s
capabilities. An abstract type Priv denotes the sets of privileges
that may be associated with a particular FH.

To connect Worlds with Privileges we assume a set of uninter-
preted functions of type Priv → Bool that act as predicates on
values of type Priv, each denoting a particular privilege. For ex-
ample, given a value p :: Priv, the proposition pread p denotes
that p includes the “read” privilege. The function caps associates
each World with a Map FH Priv, a table that associates each FH
with its privileges. The function active maps each World to the
Set of allocated FHs. Given x:FH and w:World, pwrite (select
(caps w)x) denotes that in the state w, the file x may be written.
This pattern is generalized by the predicate pset pwrite x w.

6.2 File System API Specification

A privilege tracking file system API can be partitioned into the priv-
ilege preserving operations and the privilege extending operations.

To type the privilege preserving operations, we define a predicate
eqP w w’ that says that the set of privileges and active handles in
worlds w and w’ are equivalent.

eqP = λw _ w’ →
caps w == caps w’ && active w == active w’

We can now specify the privilege preserving operations that read
and write files, and list the contents of a directory, all of which
require the capabilities to do so in their pre-conditions:

read :: {- Read the contents of h -}
h:FH → RIO <pset pread h, eqp > String

write :: {- Write to the file h -}
h:FH → String → RIO <pset pwrite h, eqp > ()

contents :: {- List the children of h -}
h:FH → RIO <pset pcontents h, eqp > [Path]

To type the privilege extending operations, we define predicates
that say that the output world is suitably extended. First, each such
operation allocates a new handle, which is formalized as:

alloc w’ w x =
(x 6∈ active w) && active w’ == {x} ∪ active w

which says that the active handles in (the new World) w’ are those
of (the old World) w extended with the hitherto inactive handle x.
Typically, after allocating a new handle, a script will want to add
privileges to the handle that are obtained from existing privileges.



To create a new file in a directory with handle h we want the
new file to have the privileges derived from pcreateFP (select
(caps w)h) (i.e., the create privileges of h). We formalize this by
defining the post-condition of create as the predicate derivP:

derivP h = λw x w’ →
alloc w’ w x &&
caps w’ == store (caps w) x

(pcreateFP (select (caps w)) h)

create :: {- Create a file -}
h:FH→Path→RIO <pset pcreateF h, derivP h> FH

Thus, if h is writable in the old World w (pwrite (pcreateFP
(select (caps w)h))) and x is derived from h (derivP w’ w x
h both hold), then we know that x is writable in the new World w’
(pwrite (select (caps w’)x)).

To lookup existing files or create sub-directories, we want to
directly copy the privileges of the parent handle. We do this by
using a predicate copyP as the post-condition for the two functions:

copyP h = λw x w’ →
alloc w’ w x &&
caps w’ == store (caps w) x

(select (caps w) y)

lookup :: {- Open a child of h -}
h:FH→Path→RIO <pset plookup h, copyP h> FH

createDir :: {- Create a directory -}
h:FH→Path→RIO <pset pcreateD h, copyP h> FH

6.3 Client Script Verification

We now turn to a client script, the program copyRec that copies the
contents of the directory f to the directory d.

copyRec recur s d =
do cs <- contents s

forM_ cs $ λ p → do
x <- flookup s p
when (isFile x) $ do

y <- create d p
s <- fread x
write y s

when (recur && (isDir x)) $ do
y <- createDir d p
copyRec recur x y

copyRec executes by first listing the contents of f, and then opening
each child path p in f. If the result is a file, it is copied to the
directory d. Otherwise, copyRec recurses on p, if recur is true.

In a first attempt to type copyRec we give it the following type:

copyRec :: Bool → s:FH → d:FH →
RIO <copySpec s d,

λ_ _ w → copySpec s d w> ()

copySpec h d = λw →
pset pcontents h w && pset plookup h w &&
pset pread h w && pset pcreateFile d w &&
pset pwrite d w && pset pcreateF d w &&
pwrite (pcreateFP (select (caps w) d)))

The above specification gives copyRec a minimal set of privileges.
Given a source directory handle s and destination handle d, the
copyRec must at least: (1) list the contents of s (pcontents),
(2) open children of s (plookup), (3) read from children of s
(pread), (4) create directories in d (pcreateD), (5) create files
in d (pcreateF), an (6) write to (created) files in d (pwrite).

Furthermore, we want to restrict the privileges on newly created
files to the write privilege, since copyRec does not need to read
from or otherwise modify these files.

Even though the above type is sufficient to verify the vari-
ous clients of copySpec it is insufficient to verify copySpec’s im-
plementation, as the postcondition merely states that copySpec
s d w holds. Looking at the recursive call in the last line of
copySpec’s implementation, the output world w is only known to
satisfy copySpec x y w (having substituted the formal parameters
s and d with the actual x and y), with no mention of s or d! Thus, it
is impossible to satisfy the postcondition of copyRec, as informa-
tion about s and d has been lost.

Framing is introduced to address the above problem. Intuitively,
because no privileges are ever revoked, if a privilege for a file
existed before the recursive call, then it exists after as well. We
thus introduce a notion of framing – assertions about unmodified
state that hold before calling copyRec must hold after copyRec
returns. Solidifying this intuition, we define a predicate i to be
Stable when assuming that the predicate i holds on w, if i only
depends on the allocated set of privileges, then i will hold on a
world w’ so long as the set of priviliges in w’ contains those in
w. The definition of Stable is derived precisely from the ways in
which the file system API may modify the current set of privileges:

bound Stable i = λx y w w’ →
i w ⇒ ( eqP w () w’ || copyP y w x w’

|| derivP y w x w’
) ⇒ i w’

We thus parameterize copyRec by a predicate i, bounded by
Stable i, which precisely describes the possible world transfor-
mations under which i should be stable:

copyFrame i s d = λw → i w && copySpec s d w

copyRec :: (Stable i) ⇒
Bool → s:FH → d:FH →
RIO <copyFrame i s d,

λ_ _ w → copyFrame i s d w> ()

Now, we can verify copyRec’s body, as at the recursive call that
appears in the last line of the implementation, i is instantiated with
λw →copySpec s d w.

7. Related Work
Higher order Logics and Dependent Type Systems includ-
ing NuPRL [4], Coq [3], Agda [18], and even to some extent,
Haskell [14, 20], occupy the maximal extreme of the expressive-
ness spectrum. However, in these settings, checking requires ex-
plicit proof terms which can add considerable programmer over-
head. Our goal is to eliminate the programmer overhead of proof
construction by restricting specifications to decidable, first order
logics and to see how far we can go without giving up on expres-
siveness. The F* system enables full dependent typing via SMT
solvers via a higher-order universally quantified logic that permit
specifications similar to ours (e.g., compose, filter and foldr).
While this approach is at least as expressive as bounded refine-
ments it has two drawbacks. First, due to the quantifiers, the gener-
ated VCs fall outside the SMT decidable theories. This renders the
type system undecidable (in theory), forcing a dependency on the
solver’s unpredictable quantifier instantiation heuristics (in prac-
tice). Second, more importantly, the higher order predicates must
be explicitly instantiated, placing a heavy annotation burden on the
programmer. In contrast, bounds permit decidable checking, and
are automatically instantiated via Liquid Types.



Our notion of Refinement Types has its roots in the predicate
subtyping of PVS [22] and indexed types (DML [30]) where types
are constrained by predicates drawn from a logic. To ensure decid-
able checking several refinement type systems including [6, 29, 30]
restrict refinements to decidable, quantifier free logics. While this
ensures predictable checking and inference [21] it severely limits
the language of specifications, and makes it hard to fashion simple
higher order abstractions like filter (let alone the more complex
ones like relational algebras and state transformers.)

To Reconcile Expressiveness and Decidability CATALYST [11]
permits a form of higher order specifications where refinements are
relations which may themselves be parameterized by other rela-
tions, which allows for example, a way to precisely type filter
by suitably composing relations. However, to ensure decidable
checking, CATALYST is limited to relations that can be specified
as catamorphisms over inductive types, precluding for example,
theories like arithmetic. More importantly, (like F*), CATALYST
provides no inference: higher order relations must be explicitly in-
stantiated. Bounded refinements build directly upon abstract refine-
ments [27], a form of refinement polymorphism analogous to para-
metric polymorphism. While [27] adds expressiveness via abstract
refinements, without bounds we cannot specify any relationships
between the abstract refinements. The addition of bounds makes it
possible to specify and verify the examples shown in this paper,
while preserving decidability and inference.

Our Relational Algebra Library builds on a long line of work
on type safe database access. The HaskellDB [13] showed how
phantom types could be used to eliminate certain classes of er-
rors. Haskell’s HList library [12] extends this work with type-level
computation features to encode heterogeneous lists, which can be
used to encode database schema, and (unlike HaskellDB) statically
reject accesses of “missing” fields. The HList implementation is
non-trivial, requiring new type-classes for new operations (e.g.,
appending lists); [19] shows how a dependently typed language
greatly simplifies the implementation. Much of this simplicity can
be recovered in Haskell using the singleton library [7]. Our goal
is to show that bounded refinements are expressive enough to per-
mit the construction of rich abstractions like a relational algebra
and generic combinators for safe database access while using SMT
solvers to provide decidable checking and inference. Further, un-
like the HList based approaches, refinements they can be used to
retroactively or gradually verify safety; if we erase the types we
still get a valid Haskell program operating over homogeneous lists.

Our Approach for Verifying Stateful Computations using mon-
ads indexed by pre- and post-conditions is inspired by the method
of Filliâtre [8], which was later enriched with separation logic in
Ynot [16]. In future work it would be interesting to use separation
logic based refinements to specify and verify the complex sharing
and aliasing patterns allowed by Ynot. F* encodes stateful compu-
tations in a special Dijkstra Monad [23] that replaces the two as-
sertions with a single (weakest-precondition) predicate transformer
which can be composed across sub-computations to yield a trans-
former for the entire computation. Our RIO approach uses the idea
of indexed monads but has two concrete advantages. First, we show
how bounded refinements alone suffice to let us fashion the RIO ab-
straction from scratch. Consequently, second, we automate infer-
ence of pre- and post-conditions and loop invariants as refinement
instantiation via Liquid Typing.
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[8] J.C. Filliâtre. Proof of imperative programs in type theory. In TYPES,
1998.

[9] C. Fournet, M. Kohlweiss, and P-Y. Strub. Modular code-based cryp-
tographic verification. In CCS, 2011.

[10] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified security
for browser extensions. In IEEE S & P, 2011.

[11] G. Kaki and S. Jagannathan. A relational framework for higher-order
shape analysis. In ICFP, 2014.
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